On the saturation number for cubic surfaces
نویسندگان
چکیده
منابع مشابه
On the saturation number of graphs
Let $G=(V,E)$ be a simple connected graph. A matching $M$ in a graph $G$ is a collection of edges of $G$ such that no two edges from $M$ share a vertex. A matching $M$ is maximal if it cannot be extended to a larger matching in $G$. The cardinality of any smallest maximal matching in $G$ is the saturation number of $G$ and is denoted by $s(G)$. In this paper we study the saturation numbe...
متن کاملOn Singular Cubic Surfaces
We study global log canonical thresholds of cubic surfaces with canonical singularities, and we prove the existence of a Kähler–Einstein metric on two singular cubic surfaces.
متن کاملRational Points on Cubic Surfaces
Let k be an algebraic number eld and F (x0; x1; x2; x3) a non{singular cubic form with coeecients in k. Suppose that the pro-jective cubic k{surface X P 3 k given by F = 0 contains three coplanar lines deened over k, and let U (k) be the set of k{points on X which does not lie on any line on X. We show that the number of points in U (k), with height at most B, is OF;"(B 4=3+") for any " > 0.
متن کاملElliptic fibrations on cubic surfaces
We classify elliptic fibrations birational to a nonsingular, minimal cubic surface over a field of characteristic zero. Our proof is adapted to provide computational techniques for the analysis of such fibrations, and we describe an implementation of this analysis in computer algebra.
متن کاملAcm Bundles on Cubic Surfaces
We prove that, for every r ≥ 2, the moduli space M X (r; c1, c2) of rank r stable vector bundles with Chern classes c1 = rH and c2 = 1 2 (3r 2 − r) on a nonsingular cubic surface X ⊂ P3 contains a nonempty smooth open subset formed by ACM bundles, i.e. vector bundles with no intermediate cohomology. The bundles we consider for this study are extremal for the number of generators of the correspo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Number Theory
سال: 2015
ISSN: 0022-314X
DOI: 10.1016/j.jnt.2015.03.014